If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2+18z+66=0
a = 1; b = 18; c = +66;
Δ = b2-4ac
Δ = 182-4·1·66
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{15}}{2*1}=\frac{-18-2\sqrt{15}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{15}}{2*1}=\frac{-18+2\sqrt{15}}{2} $
| 2(x+6)=40# | | 3/4x+2=1/4+1/4x | | 9w^2=18w+7 | | -3(g-4)=2+-3g | | 1b-8b=21 | | 5n+34=-2(1=7n) | | 6+3=1/2z+1/4z+3/8z | | 4x-3(x-7)=18 | | 7x+7=5×-11 | | 2(x=4)=22 | | 18=8x+4 | | 5/6n=35 | | 5/6x-4/35=1/6x-2/5 | | 10-(6x-10)=5+3x | | 2(5-2y)=20-2(y-1 | | 6-3(4t-14)=-48 | | 17-x=38 | | 9/4x+3=4-2x | | 10x-(6x-10)=5=3x | | 2(y-3)/4=(y+5)/3 | | x=0.8*0.2 | | 2(y-3)/4=(y-5)/3 | | x=(4/5)*(1/5) | | x+85+65=2x+150 | | x9x1/x3=x | | -0.09y+0.08(600-y)=0.08y | | A2-4a-21= | | x=1*4/5*1/5 | | s=4(3.14)R2 | | -6v-3=6v-51 | | x-8/x+2=x-1/2x+10 | | 15x-45=-10x-20 |